
Welcome our
new ES5 Overlords

Hello

A good time to talk about ES5

A good time to talk about ES5
Every current browser supports ES5

A good time to talk about ES5
Every current browser supports ES5

Every previous generation browser supports ES5

A good time to talk about ES5
Every current browser supports ES5

Every previous generation browser supports ES5

In a few weeks every browser before that will support ES5

A good time to talk about ES5
Every current browser supports ES5

Every previous generation browser supports ES5

In a few weeks every browser before that will support ES5

Node is ES5

A good time to talk about ES5
Every current browser supports ES5

Every previous generation browser supports ES5

In a few weeks every browser before that will support ES5

Node is ES5

IE8 may not be a requirement in your next project

ES5
Some new methods

ES5
Some new methods

Which are convenient

ES5
Some new methods

Which are convenient

That we ignore

There is magic in ES5

Some JS
A list of German bands

Clicking the button should show the band name

var bands = ['Apparat', 'Boy', 'Kraftklub'];
for (var i = 0; i < bands.length; i++) {
 var band = bands[i],
 button = document.createElement('button');
 button.appendChild(document.createTextNode(band));
 button.addEventListener('click', function(){
 alert(band);
 });
 document.body.appendChild(button);
}

This code has two problems

This code has two problems
Valeska from 'Boy' is actually Swiss

This code has two problems
Valeska from 'Boy' is actually Swiss

When the loop is finished, 'band' has the last value, and that's what the inner function 'sees'.

This means we can only see KraftKlub

This means we can only see KraftKlub
We don't want to that

This means we can only see KraftKlub
We don't want to that

Felix is a poser

Some basic JS (fixed)

var bands = ['Apparat', 'Boy', 'Kraftklub'];
for (var i = 0; i < bands.length; i++) {
 var band = bands[i],
 button = document.createElement('button');
 button.appendChild(document.createTextNode(band));
 (function(band){
 button.addEventListener('click', function(){
 alert(band);
 });
 })(band);
 document.body.appendChild(button);
}

Same thing in ES5
['Apparat', 'Boy', 'Kraftklub'].forEach(function(band){
 var button = document.createElement('button');
 button.appendChild(document.createTextNode(band));
 button.addEventListener('click', function(){
 alert(band);
 });
 document.body.appendChild(button);
})

1/3rd less code

1/3rd less code

Looks nice

1/3rd less code

Looks nice

Functions are more 'natural' fit for JS than older 'for' loops

Let's do it for more things!

Safe Extension of Inbuilt Methods

No, really

Quick History* Lesson
*History may be more recent than expected

ES3: Non-native methods appear during iteration
Object.prototype.oldStyleMethod = function oldStyleMethod (){};
var someObject = {};
for (var key in someObject) { console.log(key) };

ES3: But native methods don't
This is why toString() doesn't appear in 'for' loops.

console.log(Object.prototype.toString);
function toString() { [native code] };

Added methods are always enumerable in ES3
So they always appear in 'for' loops

Added methods are always enumerable in ES3
So they always appear in 'for' loops

Extending prototypes in ES3 can work if the entire universe changes their 'for' loops

Added methods are always enumerable in ES3
So they always appear in 'for' loops

Extending prototypes in ES3 can work if the entire universe changes their 'for' loops

Surprisingly this not happen

Added methods are always enumerable in ES3
So they always appear in 'for' loops

Extending prototypes in ES3 can work if the entire universe changes their 'for' loops

Surprisingly this not happen

So extending prototypes in ES3 is risky

ES5: Non enumerable methods can be added
Requires native ES5 (not shimmable)

Object.defineProperty(Object.prototype, "newStyleMethod", {
 value: function newStyleMethod(){},
 enumerable: false
});
for (var key in someObject) { console.log(key) };

That's not the only problem

Generic names
Past conflicts:

String.prototype.namespace()

Generic names
Past conflicts:

String.prototype.namespace()

Array.prototype.find()

Prefixing
Set a sensible prefix

Underscore Sugar

Methods No Yes

Regular 'for' loops Yes No

Conflict-free Yes No

Underscore Agave (ES5 only) Sugar

Methods No Yes Yes

Regular 'for' loops Yes Yes No

Conflict-free Yes Yes No

Using ES5 defineProperty() and prefixing, Agave.JS
has had no conflicts since it was created (early 2012).

Other reasons:
"You can do that. You should do that."

Brendan Eich, JQuery UK, 19 Apr 2013

http://vimeo.com/66711027

Other reasons:
"You can do that. You should do that."

Brendan Eich, JQuery UK, 19 Apr 2013

Ember does it.

Ember JS Prototype Extensions

http://vimeo.com/66711027
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/

Other reasons:
"You can do that. You should do that."

Brendan Eich, JQuery UK, 19 Apr 2013

Ember does it.

Ember JS Prototype Extensions

I just gave you a happy hippo and now we are friends.

http://vimeo.com/66711027
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/

More magic: Live Binding

An experiment in two parts
1. A data → DOM binding (I like mustache, so I use Ractive).

http://www.ractivejs.org/

An experiment in two parts
1. A data → DOM binding (I like mustache, so I use Ractive).

2. Data changes applied to binding live via object.defineProperty()

http://www.ractivejs.org/

Live binding with defineProperty

var livebind = function(object, binding, properties){
 properties.forEach(function(property){
 var hiddenProperty = '_'+property
 Object.defineProperty(object, property, {
 get: function(){ return testData[hiddenProperty]; },
 set: function(newValue){
 testData[hiddenProperty] = newValue;
 binding.set(property, newValue)
 },
 enumerable: true,
 configurable: true
 });
 })
}

Note
1. This is an experiment

Note
1. This is an experiment

2. We also use prototype chain injection (see links) for array.length magic

ES5-only is coming
For many, it's already here

ES5-only is coming
For many, it's already here

Use ES5 methods directly

ES5-only is coming
For many, it's already here

Use ES5 methods directly

Don't be scared to extend native prototypes

ES5-only is coming
For many, it's already here

Use ES5 methods directly

Don't be scared to extend native prototypes

Experiment

Thanks.
@mikemaccana

Enjoy the week

http://twitter.com/mikemaccana

